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Many bioactive metabolites possess unusual carbohydrates
required for molecular recognition.1 The glycosyltransferases
which incorporate these essential ligands are known to rely almost
exclusively upon UDP- and TDP-nucleotide sugars and some have
demonstrated promiscuity toward the sugar donor.2 These dis-
coveries have led to the exploitation of the carbohydrate biosyn-
thetic machinery to manipulate metabolite glycosylation,3 revi-
talizing interest in methods to expand the repertoire of available
UDP- and TDP-sugar nucleotides.4 We now report that a substrate
specificity reevaluation ofSalmonella entericaLT2 R-D-glucopy-
ranosyl phosphate thymidylyltransferase (Ep) reveals this enzyme
can convert a wide array ofR-D-hexopyranosyl phosphates to their
corresponding UDP-andTDP-nucleotide sugars. Thus, we present
a general chemoenzymatic method to rapidly generate these
reagents, the significance of which is in providing a substrate set
for developing in vitro glycosylation systems.5

The selected enzyme for this study is a member of the prevalent
nucleotidylyltransferase family responsible for the reversible
conversion ofR-D-glucopyranosyl phosphate (Scheme 1a,2) and
NTP (e.g.1) to the corresponding NDP-sugar nucleotide (3) and
pyrophosphate (4). Of the many nucleotidylyltransferases studied,
the 3-forming thymidylyltransferases have received the least
attention.6 The best characterized thymidylyltransferase (Ep) is
from Salmonella in which substrate specificity studies were
limited to only a few available hexopyranosyl phosphates.6a To
extend these studies, we overexpressed thermlA-encoded Ep in
E. coli to provide the desired Ep as >5% of the total soluble
protein.7 The corresponding Ep was purified to near homogeniety

with a specific activity of 110 U mg-1, a 2-fold improvement
over the previously reported values.6a,8

Most of the R-D-hexopyranosyl phosphates examined were
synthesized from free sugars while2, 56, and 57 were com-
mercially available. For most synthetically derived glycosyl
phosphates (Scheme 1b), a general phosphorylation strategy from
the appropriately protected precursor relied upon (i) anomeric
activation via the ethyl-thio-â-D-pyranoside (9, 17, 25, 30, 35,
and409), (ii) deprotection/reprotection (10, 18, 26, 31, and36),
(iii) phosphorylation (11, 19, 27, 32, 37, and 41), and (iv)
complete deprotection (12, 20, 28, 33, 38, and43). The overall
yield of this four-step phosphorylation strategy ranged from 19
to 28% including the final ion exchange. Alternatively, phospho-
rylation (45, 49, and 53) via the glycosyl halide followed by
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Scheme 1. (a) The Reaction Catalyzed by Ep and (b) the
Syntheses ofR-D-Hexopyranosyl Phosphatesa

a (a) Ph3P, CCl4; (b) Ac2O, pyr; (c) (i) LiAlH4, (ii) AcOH/HCl, (iii)
BzCl, pyr; (d) BzCl, pyr; (e) pFPTC-Cl, DMAP; (f) (n-Bu)3SnH; (g) (i)
NaH, imidazole; (ii) CS2; (iii) CH 3I; (h) AIBN, (n-Bu)3SnH; (i) (i)
CF3CO2H, (ii) BzCl, pyr; (j) EtS-TMS, ZnI2; (k) (i) NaOMe; (ii) NaH,
BnBr; (l) (BnO)2P(O)OH, CF3SO3H, NIS; (m) H2, Pd/C; (n) (i) HBr; (ii)
(BnO)2P(O)OH, silver triflate, 2,4,6-collidine; (o) NaOH; (p) AcOH/HCl.
In each case, cation exchange provided the Na+ salt.
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complete deprotection gave the glycosyl phosphates47, 51, and
55 in an overall yield ranging from 37 to 47%. Our 6-deoxy
precursor (8) was synthesized by LiAlH4 reduction and subsequent
benzoylation of the previously described halide7.10 For the
4-deoxy progenitor, deoxygenation at C-4 was accomplished by
selective benzoylation of methylâ-D-galactopyranoside (13) to
provide the desired tribenzoylated14 (54%) as well as the tetra-
benzoylated derivative (19%) as previously described.11 Subse-
quent C-4 activation (15) and (n-Bu)3SnH reductive 4-deoxygen-
ation were accomplished as previously described to give the
desired 4-deoxy precursor16.12 The 3-deoxy predecessor24was
synthesized from 1,2:5,6-di-O-isopropylidene-R-D-glucofuranose
(21) by reduction of the previously reported furanose22,13 while
the 2-deoxy precursor39 derived from a commercial source.

To evaluate the synthetic utility of the purified thymidylyl-
transferase, Ep, R-D-hexopyranosyl phosphate, Mg2+, and NTP
were incubated at 37°C for 30 min and the extent of product
formation determined by HPLC. The results of these assays are
illustrated in Table 1. Confirmation of product formation was
based upon HPLC coelution with commercially available stan-

dards and/or HPLC isolation and high-resolution mass spectro-
scopy of the product.14 As controls, no product formation was
observed in the absence of Ep, glycosyl phosphate, Mg2+, or
NTP.15,16

The fundamental goal of this work is to assess the utility of Ep

as a catalyst/reagent to simplify the synthesis of useful nucleotide
sugars. Table 1 clearly illustrates Ep can accomplish this task in
that of the twelve glycosyl phosphates tested (which include all
possibleR-D-hexoses and monodeoxyR-D-glucoses), eight with
TTP and six with UTP provide appreciable product under the
conditions described.17 An examination of acceptedR-D-hexopy-
ranosyl phosphates with TTP suggests Ep prefers pyranosyl
phosphates which are predicted to exist predominately as4C1

conformers (3, 12, 20, 28, 43, 56, and57), while those predicted
to not adopt the4C1 conformation show little or no activity (31,
38, 47, 51, and 55).18 Regarding specific interactions required
for conversion, analysis of the corresponding deoxy series (12,
20, 28, and43) implicates only a single critical hydroxyl (C-2),
the removal of which impairs the yield by>70%. A similar trend
is observed in the UTP series with two obvious exceptions,
glycosides28 and 56. Cumulatively, these results may suggest
that, while the C-2 hydroxyl is universally critical for turnover,
alterations at C-3 in the context of UTP result in adverse
cooperativity.

In conclusion, the presented work clearly demonstrates the
pliable nature of Ep and its potential for the synthesis of desired
nucleotide sugars. Thus, these studies will broadly impact efforts
to understand and exploit the biosynthesis of glycosylated
bioactive natural products.19 Moreover, this work suggests Ep

specificity may be governed by conformation rather than specific
hydrogen bonds. Efforts are in progress to expand the scope of
this methodology.
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Table 1. Ep-Catalyzed Conversion of Substrates

a Percent conversion) [AP/(AP + AT)] × 100, whereAP ) the NDP-
sugar product peak integration andAT represents the NTP peak
integration. HRMS for all observed products reported in the Supporting
Information.b Standard retention times: TDP, 4.5 min; TTP, 7.2 min;
UDP, 4.0 min; UTP, 6.1 min.c Commercially available.d Coelutes with
commercially available standard.e Product hydrolysis observed (43,
7.6% TDP and 10.2% UDP).f Adjusted for the 2:1R/â-28. g In contrast
to previously published studies (ref 6a).h No products observed.
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